
© 2018 SignalCore, Inc. All Rights Reserved.

Programming Manual
SC5309A & SC5310A

100 kHz to 2.5 GHz RF Downconverter
www.signalcore.com

©2018 | SC5309A & SC5310A Programming Manual Rev 2.0

1 Introduction

Table of Contents

1 Introduction .. 3

2 Driver Architecture .. 4

2.1 API Function Names and Call Type .. 4

2.2 Compiling Code in C/C++ ... 5

3 Identifying, Opening, and Closing Devices ... 6

3.1 Identifying Devices on the Host Computer .. 6

3.2 Opening and Connecting to a Device .. 7

3.3 Disconnecting from and Closing a Device .. 7

3.4 Multiple Devices .. 7

3.5 Initialize Device .. 7

4 Configuration Functions .. 8

4.1 Setting the Frequency at the Ports .. 8

4.2 Setting the Attenuators ... 8

4.3 Configuring the Conversion Signal Path .. 9

4.3.1 Enabling the RF Preamplifier ... 10

4.4 Configuring the Conversion Gain ... 10

4.5 Setting the Synthesizer Modes .. 11

4.6 Configuring the Reference Clock ... 12

4.6.1 Adjustment to the Internal TCXO Clock ... 12

4.7 Saving the New Default State of the Device .. 12

5 Query Functions .. 13

5.1 Getting General Device Information ... 13

5.2 Getting the Device Status .. 13

5.3 Getting Other RF Parameters .. 14

5.4 Retrieving Auto Gain Parameters .. 14

5.5 Retrieving the Device Temperature .. 14

6 Calibration Functions ... 15

6.1 Obtaining Calibration Data .. 15

6.1.1 Structured Calibration Data Format .. 15

6.1.2 Reading Formatted Data ... 17

6.1.3 Reading Raw Calibration Data ... 17

6.2 Configuring the Gain of the Device Using Calibration ... 18

Rev 2.0 | SC5309A & SC5310A Programming Manual SignalCore, Inc.

2 SC5309A & SC5310A Programming Manual

7 General Functions ... 20

7.1 Writing to the User EEPROM ... 20

7.2 Reading from the Calibration and User EEPROMs ... 20

7.3 Configuring the Frequency Plan .. 21

7.4 Self-Calibration of the LO1 synthesizer ... 21

7.5 Write Registers .. 21

7.6 Read Registers ... 22

8 Revision Notes ... 23

©2018 | SC5309A & SC5310A Programming Manual Rev 2.0

3 Introduction

1 Introduction

The SignalCore SC5309A and SC5310A are high dynamic, high performance triple stage super

heterodyne RF downconverters covering the frequency range of 100 kHz to 2.5 GHz. These products

offer wide conversion bandwidths of up to 40 MHz, making them ideal for applications involving

broad band RF signal conversion such as those in data links, TV and radio band spectrum monitoring,

cable TV test, and other test and measurement systems.

This manual serves as a programming guide to those using the WindowsTM software API to program

these devices for the purpose of communicating with them through a host computer via the PXIe,

USB, or RS232 bus. This document is structured into sections that describe the generic use of the

product’s functions such as searching for available devices, opening a device, changing the

conversion parameters, obtaining gain correction using calibration data, and putting the device into

power standby.

This manual will explain each function in detail, including the purpose of the function and what each

of its parameters mean. Wherever applicable, snippets of C/C++ code are provided as examples on

how to effectively use a function.

SignalCoreTM a registered trademark of SignalCore Incorporated, USA. SignalCoreTM is referred to as SignalCore in this manual.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States and/or other countries.

Trade names are trademarks of their respective owners.

© 2018 SignalCore Incorporated, USA

Rev 2.0 | SC5309A & SC5310A Programming Manual SignalCore, Inc.

4 SC5309A & SC5310A Programming Manual

2 Driver Architecture

The SC5309A is a PXIe based product, while the SC5310A is controlled through USB and RS232. Each

of these three different methods of communication requires its unique set of header files, dynamic

linked libraries (DLL), and system level drivers.

The software architectures of the communication methods are illustrated in the following table. At

the highest level, where the user application resides, are the user code, header file(s) (*.h) and the

library file (*lib) for the device. The level below that has the device API DLL and driver DLL (*.dll),

which are called by the application level. The lowest level is where the device system driver or the

kernel level driver (*.sys) resides. Table 1 shows the software architecture of the three interface

buses.

Table 1. Software Architectures

PXIe USB RS232

userapp.c

sc5309a.h

sc5309a.lib

userapp.c

sc5310a_usb.h

sc5310a_usb.lib

userapp.c

sc5310a_rs232.h

sc5310a_rs232.lib

sc5309a.dll

scipciexr.dll

sc5310a_usb.dll

libusb-1.0.dll

sc5310a_rs232.dll

kernel32.dll

scipciexr.sys winusb.sys serial.sys

2.1 API Function Names and Call Type

The function names for an interface are compounded words comprising of the product name,

followed by the interface, and ending with the function description such as

“sc5310a_usbSetFrequency”. In this document, all function descriptions will leave out the product

and interface description so that “SetFrequency” is used to represent all interfaces. All functions are

of call type __stdcall in WindowsTM.

©2018 | SC5309A & SC5310A Programming Manual Rev 2.0

5 Driver Architecture

2.2 Compiling Code in C/C++

The header files are shared between PXI, USB, and RS232 interfaces. To successfully use the header

files to write applications, proper macros must be defined prior to compilation of the code.

In Microsoft Visual Studio, these macros can be entered in as Preprocessor Definitions in the project

properties window. This could also be accomplished in GCC with the -D name option, where name is

one of the macro words.

Device/Interface Macro

Down Converter DOWNCONVERTER

PXI PXI_DEVICE_TYPE

USB USB_DEVICE_TYPE

RS232 RS232_DEVICE_TYPE

Rev 2.0 | SC5309A & SC5310A Programming Manual SignalCore, Inc.

6 SC5309A & SC5310A Programming Manual

3 Identifying, Opening, and Closing Devices

The SC5309A and SC5310A downconverters are identified by their unique serial numbers. This serial

number is passed to the OpenDevice() function as a string in order to open a connection to the

device. The string consists of 8 HEX format characters such as 100E4FC2.

3.1 Identifying Devices on the Host Computer

The serial number is found on the product label, attached to the outer body of the product. However,

if the serial number cannot be found, there is a function to obtain the current devices connected to

the host computer. The SearchDevices() function scans the host computer for SC5309A or

SC5310A devices. If found, a list containing the number of devices and their corresponding serial

numbers is returned. The function is declared as:

SCISTATUS SearchDevices(char **serialNumberList,

int *numberDevices);

The **serialNumberList is a 2D array format [number of devices, serial number

length + 1], and *numberDevices is the number of devices detected and available for

connection. The following code snippet demonstrates how to prepare to call this function:

SCISTATUS status;

char **serialNumbers;

int i, nDevices;

serialNumbers = (char**)malloc(sizeof(char*)*MAXDEVICES);

 for (i=0;i<MAXDEVICES; i++)

 serialNumbers[i]

(char*)malloc(sizeof(char)*SCI_SN_LENGTH);

/*

 MAXDEVICES is the number of devices to allocate memory for.

 SCI_SN_LENGTH is defined 0x09

*/

status = SearchDevices(serialNumbers,

 &nDevices

);

if(status != SCI_SUCCESS)

...error handling, free allocated memory...

It is important to free all allocated memory immediately once it is not in use. The following code lines

show how to deallocate the memory used to hold the serial numbers.

for(i = 0; i < MAXDEVICES; i++)

free(serialNumbers[i]);

free(serialNumbers);

©2018 | SC5309A & SC5310A Programming Manual Rev 2.0

7 Identifying, Opening, and Closing Devices

3.2 Opening and Connecting to a Device

The first step to communicating with the device is to open a connection to it from the host computer.

The following code is an example of how this is done using the DeviceOpen() function. The

function returns a HANDLE to the device that must be used by subsequent function calls to the

device:

SCISTATUS status;

HANDLE deviceHandle;

Status = DeviceOpen(“<serial number string>”,

 &deviceHandle

);

The “<serial number string>” of type char can be substituted by the serialNumber[i]

as found in the previous code example. Upon successfully executing this function, the device active

LED on the front panel will turn on green. This DeviceOpen() call does not apply any other changes

to the device; its working state remains unchanged by the command.

3.3 Disconnecting from and Closing a Device

When the device is no longer in use, the application should disconnect it from the host computer.

This is done by using the DeviceClose() function. Once it has executed, the active LED on the

front panel will turn off and the HANDLE to the device will no longer be valid for further use:

status = DeviceClose(deviceHandle);

deviceHandle = NULL;

3.4 Multiple Devices

Multiple devices may be opened simultaneously within one application. The DeviceOpen()

function must be called for each of the devices using their respective serial numbers. The HANDLE

returned by each call is unique to each device and must be used for subsequent calls only on the

device from which it is returned.

3.5 Initialize Device

To initialize the device to its reset state or power-up state, use the following code example:

#define RESET_STATE 1;

#define CURRENT_STATE 0;

Status = InitDevice(deviceHandle,

 RESET_STATE

);

In the example above, if the value 0 or CURRENT_STATE is written, the device will reprogram all the

hardware to its current state; that is, the state does not change, but the hardware components are

refreshed.

Rev 2.0 | SC5309A & SC5310A Programming Manual SignalCore, Inc.

8 SC5309A & SC5310A Programming Manual

4 Configuration Functions

These functions set the device configuration parameters such as frequency, attenuation, filters, and

signal paths.

4.1 Setting the Frequency at the Ports

The RF input port frequency can be set by calling the SetFrequency() function while the IF output

port frequency can be set by calling the SetIfFrequency() function. The RF port frequency has a

settable upper limit of 2.5 GHz and a lower limit of 0 Hz, while the IF port frequency has a settable

upper limit of 100 MHz and a lower limit of 0 Hz. Although these are functional limits, they may not

represent the operational performance boundaries of the device. Please consult the product

Hardware Manual for more information.

The functions to change frequency may be programmed as:

double rf_frequency = 1.0e9;

double if_frequency = 70e6;

status = SetFrequency(deviceHandle,

 rf_frequency

);

status = SetIfFrequency(deviceHandle,

 if_frequency

);

Note that the RF frequency resolution is 1 Hz, while the IF frequency is 0.5 MHz.

4.2 Setting the Attenuators

These devices have 4 sets of programmable attenuators, including 2 in the RF input section, and 2 in

the final IF output section. The attenuators have 0.25 dB step resolution and are calibrated to 1 dB

steps. Numbers represent these attenuators as defined in the header files:

#define RFATTEN1 0

#define RFATTEN2 1

#define IF3ATTEN1 2

#define IF3ATTEN2 3

To set the attenuators to a certain value, use the function SetAttenuator(). As an example, the

following code snippet sets the first RF attenuator to 20 dB and the final IF attenuator to 5.25 dB:

status = SetAttenuator(deviceHandle,

 RFATTEN1,

 20.00

);

©2018 | SC5309A & SC5310A Programming Manual Rev 2.0

9 Configuration Functions

Status = SetAttenuator(deviceHandle,

 IF3ATTEN2,

 5.25

);

4.3 Configuring the Conversion Signal Path

These downconverters have configurable filter options and conversion paths. Depending on the

option choice, the user needs to properly configure the device prior to setting frequencies and gain

(via attenuators and preamplifier). The function SetSignalPath() is used to configure the device

paths. It requires a structure input containing the configuration parameters in the following form:

typedef struct

{

 bool_t rfAmp;

 bool_t if2Filter1;

 bool_t invertSpectrum;

} signalPathParams_t;

A brief description of each structure parameter’s function is provided below. For more details, refer

to the product Hardware Manual.

rfAmp The RF preamplifier setting: a value of 0 disables it and a value of 1 enables
it. The parameter only affects the preamplifier if only the autoCtrlRfAmp
parameter for the autogain calculation is disabled; see SetAutoGain().
There is another function called SetRfAmp() that enables and disables
the RF preamplifier by overriding the setting of the SetAutoGain()
function.

if2Filter1 This selects filter#1 instead of the default filter at 0. Note the standard
product offering does not include filter#1. Filter#1 may have a different
bandwidth from filter#0 giving the user bandwidth flexibility in some
applications.

invertSpectrum When the conversion is not bypassed, the spectrum at the IF port can be
set to inverted relative to the RF input. This will affect the value of the LO
frequency when RF and IF values are used.

To set the device to invert the IF spectrum and use the default IF2 filter, the code is as follows:

signalPathParams_t *pathParameters;

pathParameters->if2Filter1 = 0; /* set the filter to default */

pathParameters->invertSpectrum = 1;

status = SetSignalPath(deviceHandl,

 pathParameters

);

Rev 2.0 | SC5309A & SC5310A Programming Manual SignalCore, Inc.

10 SC5309A & SC5310A Programming Manual

4.3.1 Enabling the RF Preamplifier

Although the RF preamplifier can be enabled or disabled using the SetSignalPath() function,

it can also be controlled through the SetPreamp() function. The advantage of using this function

is that it only acts on the amplifier and not on other signal path components. The amplifier is

enabled by writing the following code:

Bool_t preampStatus = 1;

Status = SetPreamp(deviceHandle,

 preampStatus

);

4.4 Configuring the Conversion Gain

The device has an algorithm to automatically set up the attenuators to achieve the desired gain while

maintaining the desired dynamic range. The gain of the device is the difference in power between

the output and input ports, if most of the gain is applied close to the input of the device, the signal-

to-noise dynamic range is improved, however if it is applied later close to the output, the linearity

dynamic range is improved. A balance of the gain will also provide a balance between SNR and IMD

dynamic ranges.

Since the computation is performed by the onboard MCU, it relies heavily on ideal parameters such

as attenuator states in the calculations, thus the device setting will only be within 2 dB of the desired

value. See Section 6 for functions that will allow for better gain settings and accuracy calculations.

Setting the device up for gain requires user input gain parameters in its structure form:

typedef struct gainParams_s

{

 float rfLevel;

 float mixerLevel;

 float ifLevel;

 uint8_t linearMode;

 bool_t autoCtrlRfAmp;

} gainParams_t;

Here the members are:

rfLevel This is the nominal expected level at the RF port, commonly called the
reference level when the converter is used in a signal analyzer application.

ifLevel This is the nominal level at the first input mixer. Typical values of -20 dBm
to +13 dBm are used.

linearMode There are 6 options:

 0 Calculations will use the mixerLevel to determine the attenuator values;
this is the default setting.

 1 Normal mode, a trade off between noise figure and linearity.

©2018 | SC5309A & SC5310A Programming Manual Rev 2.0

11 Configuration Functions

 2 Better noise figure mode.

 3 Best SNR dynamic range mode. Best setting for fundamental tone
measurement.

 4 Better linearity

 5 Best linearity

autoCtrlRfAmp The algorithm determines the state of the RF preamp instead of the status
of the RF preamp set manually by SetPreamp() or SetSignalPath().

The following code demonstrates how to set up the device to automatically set the gain as the

frequency is changed. If its parameters remain unchanged throughout the application, the function

only needs to be run once.

unsigned char loadParams = 1;

unsigned char autoGainEnable = 1;

gainParams_t *gainParams;

gainParams->rfLevel = -10.0;

gainParams->mixerLevel = -20.0;

gainParams->ifLevel = 0.0;

gainParams->linearMode = 0;

gainParams->autoCtrlRfAmp = 1;

status = SetAutoGain(deviceHandle,

 gainParams,

 loadParams,

 autoGainEnable

);

There are 2 additional parameters used in the above functions: loadParams and

autoGainEnable. They are defined as:

loadParams Set this to 1 if the device is required to load in a fresh set of gainParams.
If the gain parameters do not change through the application, then the
parameter only needs to be loaded once.

autoGainEnable This parameter, if set to 1, will cause the device to update the attenuators
and RF amplifier when frequencies are changed.

4.5 Setting the Synthesizer Modes

The loop gain of the synthesizer can be changed to shape the phase noise spectral density of the

signal. There are 3 options for the loop gain: low, normal, and high. For low levels of close-in carrier

phase noise, select HIGH. The first local oscillator is an agile VCO based synthesizer whose tuning

speed may be improved by enabling fast tuning. Consult the Hardware Manual for more information

on these synthesizer modes. The following code demonstrates how the settings are written:

Rev 2.0 | SC5309A & SC5310A Programming Manual SignalCore, Inc.

12 SC5309A & SC5310A Programming Manual

Enum LOOPGAIN pllLoopGain = HIGH,

Bool_t fastTuneEnable = 1;

Status = SetSynthMode(deviceHandle,

 pllLoopGain

);

4.6 Configuring the Reference Clock

The configuration of the device reference clock behavior is performed using the following function:

bool_t lockExtEnable = 1; /* enable locking to external source */

bool_t refOutEnable = 1; /* enable output of reference clk */

bool_t clk100Enalbe = 0; /* ref out will be 10 MHz, not 100 MHz */

bool_t pxi10ClkEnable = 0; /* export 10MHz PXI clk – SC5309A only*/

status = SetReferenceClock(deviceHandle,

lockExtEnable,

 refOutEnable,

 clk100Enable,

 pxi10ClkEnable

);

4.6.1 Adjustment to the Internal TCXO Clock

The device has a TCXO timebase whose frequency accuracy may be adjusted via a DAC. When the

device is not locked to an external reference source, it uses its internal TCXO as the reference. The

following functions are used to make incremental adjustments to this clock:

unsigned int tcxoDac = 0x2E0A; /* value range of 0x00 to 0x3FFF */

status = SetReferenceDac(deviceHandle,

 tcxoDac);

4.7 Saving the New Default State of the Device

The current operating state of the device, including the new DAC value as discussed above, can be

stored as the device default by calling the SetAsDefault() function. Once this function is

executed, the current state will be the device reset and power up state. This is done by using the

following code:

status = SetAsDefault(deviceHandle);

©2018 | SC5309A & SC5310A Programming Manual Rev 2.0

13 Query Functions

5 Query Functions

These functions read back data from the device such as the current device configuration, operating

status, temperature, and other general device information.

5.1 Getting General Device Information

Information such as the product hardware revision, serial number, etc., can be retrieved from the

device using the following code:

deviceInfo_t deviceInfo;

status = GetDeviceInfo(deviceHandle,

 &deviceInfo

);

The deviceInfo_t structure has the following members (see header files for more info):

typedef struct deviceInfo_s

{

 uint32_t productSerialNumber;

 float firmwareRevision;

 float hardwareRevision;

 uint8_t deviceInterface;

 scidate_t calDate;

 scidate_t manDate;

} deviceInfo_t;

5.2 Getting the Device Status

The phase lock loop status of each of the internal synthesizers and the operational configurations

such as the signal path configuration, reference configuration, and local oscillator power status can

be obtained by passing the deviceStatus_t structure into the following function:

deviceStatus_t deviceStatus;

status = GetDeviceStatus(deviceHandle,

 &deviceStatus

);

The members of deviceStatus_t will not be explicitly discussed here as there are many of them.

Please read the scialbdefs.h header file for more details.

Rev 2.0 | SC5309A & SC5310A Programming Manual SignalCore, Inc.

14 SC5309A & SC5310A Programming Manual

5.3 Getting Other RF Parameters

The RF dynamic parameters such as attenuator values, IF frequencies, LO frequencies, and RF

frequency can be read back using:

rfParams_t rfParams;

status = GetRfParameters(deviceHandle,

 &rfParams

);

The structure of the rfParams_t is:

typedef struct

{

 double frequency; /* the RF frequency */

 double if1Freq; /* the first IF freq */

 double if2Freq; /* the second IF freq */

 double if3Freq; /* the third IF freq */

 double lo1Freq; /* the first agile LO freq */

 double lo2Freq; /* the second LO freq */

 double lo3Freq; /* the third LO freq */

 attenuator_t atten; /* the values of the attenuators */

 signalPathParams_t rfPath; /* the signal path config */

} rfParams_t;

5.4 Retrieving Auto Gain Parameters

To obtain the current autoGainParameters used to calculate the attenuator vales for automatic

gain setting, use the following function:

gainParams_t *gainParams;

status = GetGainCalcParameters(deviceHandle,

 gainParams);

5.5 Retrieving the Device Temperature

The device has an internal temperature sensor that reports temperature back in degrees Celsius.

float deviceTemp;

status = GetTemperature(deviceHandle,

 deviceTemp

);

This temperature can be used in computing the conversion gain of the device since gain is a

temperature dependent parameter.

©2018 | SC5309A & SC5310A Programming Manual Rev 2.0

15 Calibration Functions

6 Calibration Functions

These functions utilize the onboard calibration data to compute the conversion gain of the device.

The conversion gain varies with the device configuration such as signal path selection, attenuator

values, and temperature changes. To compute the conversion gain accurately would require two

sets of information: the device configuration and its calibration data.

6.1 Obtaining Calibration Data

There are two ways to read in data from the device:

1. Read data back from the device in a formatted structure.

2. Read data back as an array of raw bytes and then convert the raw bytes into formatted data.

6.1.1 Structured Calibration Data Format

The structure format that holds the calibration data is:

typedef struct calData_s

{

float calTemp;

float *tempCoeff;

float *if3ResponseCalFreq;

float *if3ResponseCal;

 float *if3Atten1Cal;

 float *if3Atten2Cal;

 float if2filt1Cal;

 float if3InvertGain;

 float *rfCalFreq;

 float *rfAbsGainCal;

 float *rfAmpGainCal;

 float *rfAtten1Cal;

 float *rfAtten2Cal;

} calData_t;

The following are descriptions of each of the struct members:

calTemp - The factory calibration temperature.

tempCoeff - Contains 2 temperature-gain coefficients c1 and c2.

if3ResponseCalFreq - This is the IF frequency relative gain response with respect to 50

MHz (by default).

if3ResponseCal - This is the relative gain response with respect to 50 MHz.

if3ResponseCalfreq f0 f1 f2 … fN

if3ResponseCal rg(f0) rg(f1) rg(f2) … rg(fN)

Rev 2.0 | SC5309A & SC5310A Programming Manual SignalCore, Inc.

16 SC5309A & SC5310A Programming Manual

if3Atten1Cal and if3Atten2Cal - Contains the relative measured values corresponding

to the attenuation states of the two IF3 attenuators at a fixed IF of 50 MHz. The 2x30 2D array

has the following layout:

if2Filt1Cal - This is the relative gain difference with respect to filter#0 when selecting the

filter#1 bandpass filter.

if3InvertGain - This is the relative gain difference when spectral inversion is selected.

rfCalFreq, rfAbsGainCal, rfAmpGainCal, rfAtten1Cal, and rfAtten2Cal –

The RF response calibration includes the absolute gain of the device as a function of RF

frequency under the following conditions:

1. All attenuators are set to 0 dB.

2. All filter selections are in their default state of value 0.

3. IF3 frequency is set to 50 MHz.

The above conditions are the default and all other configuration measurements are made

relative to them. Also included are the RF pre-amplifier gain and the measured attenuation

values at each state of the two RF attenuators. The data array is laid out as follows:

Atten state 1 dB 2 dB 3 dB … 30 dB

IF3 Atten#1 A1_a1 A1_a2 A1_a3 … A1_a30

IF3 Atten#2 A2_a1 A2_a2 A2_a3 … A2_a30

rfCalFreq f0 f1 f2 … fN

rfAbsGainCal g(f0) g(f1) g(f2) … g(fN)

rfAmpGainCal(f) ag(f0) ag(f1) ag(f2) … ag(fN)

rfAtten1Cal 1dB A1_a1(f0) A1_a1(f1) A1_a1(f2) … A1_a1(fN)

rfAtten1Cal 2dB A1_a2(f0) A1_a2(f1) A1_a2(f2) … A1_a2(fN)

: : : : … :

rfAtten1Cal 30 dB A1_a30(f0) A1_a30(f1) A1_a30(f2) … A1_a30(fN)

rfAtten2Cal 1 dB A2_a1(f0) A2_a1(f1) A2_a1(f2) … A2_a1(fN)

rfAtten2Cal 2 dB A2_a2(f0) A2_a2(f1) A2_a2(f2) … A2_a2(fN)

: : : : … :

rfAtten2Cal 30 dB A2_a30(f0) A2_a30(f1) A2_a30(f2) … A2_a30(fN)

©2018 | SC5309A & SC5310A Programming Manual Rev 2.0

17 Calibration Functions

6.1.2 Reading Formatted Data

Memory must be allocated for the members of struct calData_t prior to passing it through

the GetCalData() function to retrieve calibration data. The minimum memory size requirement

for the arrays are provided in their descriptions above. Their size constants can also be found in

the scialbdefs.h header files. The following code snippet demonstrates how formatted data is

read from the device:

calData_t *calData;

calData->rfCal = (float**)calloc(RFCALPARAMLEN,sizeof(float*));

for(i = 0;i<RFCALPARAMLEN;i++)

calData->rfCal[i]=(float*)calloc(RFCALFREQLEN,sizeof(float));

/* likewise allocate memory to the other struct members */

status = GetCalData(devicehandle,

 calData

);

6.1.3 Reading Raw Calibration Data

Reading the entire calibration data may be longer than what the application desires, so in cases

where data needs to be retrieved faster the data could be stored to file ahead of time and read

back when it is required. Raw data in bytes may be read from the device and stored at a text file

on the host computer. Once the data is read in as a 1D byte array, it will need to be formatted to

be useful. There are two functions provided to perform these tasks: one to read in the raw data

and the other to convert it to formatted data.

unsigned char *rawData;

rawData = (unsigned char*)calloc(RAWDATALEN, sizeof(char));

status = GetRawCalData(deviceHandle,

 rawCalData

);

status = AllocateCalDataMemory(calData);

status = RawToFormatData(rawCalData,

 calData

);

Note that RAWDATALEN is the total number of raw data bytes. This data is stored on the calibration

EEPROM between addresses 0x3F8 and 0x55FF. See the calibration EEPROM map of the product

hardware manual for more details.

Rev 2.0 | SC5309A & SC5310A Programming Manual SignalCore, Inc.

18 SC5309A & SC5310A Programming Manual

6.2 Configuring the Gain of the Device Using Calibration

The SC5309A and SC5310A are broadband devices whose RF conversion gain response varies as a

function of frequency, filter selection, and signal path for any given attenuation setting. That is,

setting the attenuators to obtain a certain gain value at one frequency does not guarantee that it

remains the same at another frequency, especially if the other frequency is over a couple of GHz

different. The user can experimentally determine how the attenuators are to be set as a function of

frequency. The resulting gain data can be stored in a table to be read back and applied as frequency

is changed. In effect, the user is performing self-calibration on the device and using the calibration

data in an application.

These devices come with both RF and IF attenuators so that the user has the freedom to set them

accordingly to achieve the desired performance. For more information on how to set these

attenuators to achieve the desired performance, consult the Hardware Manual. SignalCore has

algorithms to compute the values of the attenuators such that the device is set up for its best desired

performance. The function CalcAttenValues() will compute the attenuator values based on user

inputs such as frequency, nominal input and output power levels, and linear mode selection. In

addition to these user inputs, it uses calibration data so that the conversion gain is also computed

and returned with the attenuator values. If the device is programmed with the calculated attenuator

values, the computed gain is that of the device to within margin of error.

The following code demonstrates how the gainParams_t structure is used, along with frequency

parameters, calibration data, and temperature, to compute the attenuator values required to

configure the device to the calculated gain.

calData_t *calData;

/* read in calibration data to fill up calData, see GetCalData() */

gainParams_t gainParams;

attenuator_t *attenuator; /* receive attenuator values */

float gain; /* receive the computed gain */

gainParams.rfLevel = -10.0;

gainParams.mixerLevel = -20.0;

gainParams.ifLevel = 0.0;

gainParams.linearMode = 0;

gainParams.autoCtrlRfAmp = 0;

loadParams = 1; /* allow loading the gainParams into device memory

*/

autoGainEnable = 0; /* disables the device’s ability to override

external setting to attenuators and preamplifiers. */

status = CalcAttenValues(rfFrequency,

 ifFrequency,

 temperature,

©2018 | SC5309A & SC5310A Programming Manual Rev 2.0

19 Calibration Functions

 gainParams,

 calData,

 pathParameters,

 attenuator,

 &gain);

/* apply the calculated attenuator values */

status = SetAttenuator(deviceHandle,

 RFATTEN1,

 Attenuator->rfAtten1Value

);

/* do the same for the rest of the attenuators */

/* use SetPreamp if the path was configured previously */

status = setPreamp(deviceHandle, pathParameters->rfAmp;

/* use SetSignalPath if configuring the path for the first time or

reconfiguring */

status = SetSignalPath(deviceHandle, pathParameters);

/* use SetAutoGainParams to store the current gain calculation

parameters */

status = SetAutoGainParams(deviceHandle,

 gainParams,

 loadParams,

 autoGainEnable);

If the user prefers to set the attenuator values and the RF amplifier independently from those

calculated by the CalcAttenValues() function, the gain of the device may be computed using

the CalcGain() function, as shown here:

/* fill in the attenuator values, set the pathParameters, then call

*/

Status = CalcGain(rfFrequency,

 ifFrequency,

 temperature,

 calData,

 pathParameters,

 attenuator,

 &gain);

The computed gain of the device is, approximately, the difference between the output IF level and

the input RF level. The step resolution and accuracies of the attenuators limit the gain values, so

although the exact desired gain may not be obtainable, the above 2 functions return a value that is

close to the actual gain of the device for that setting. Notice that in both these functions, the gain is

not the input parameter to set up the device. Rather, the gain is computed by examining the settings

of the device. In many converter applications, it is easier to think in terms of the expected RF level

and the required IF level, so configuring the device to meet the input and output requirements is the

best way to approach it.

Rev 2.0 | SC5309A & SC5310A Programming Manual SignalCore, Inc.

20 SC5309A & SC5310A Programming Manual

7 General Functions

These functions may be useful for some applications in that they aid in reading from and writing to

the EEPROMs, making minor frequency adjustments to IF1 and IF2, performing synthesizer self-

calibration, and directly writing the registers.

7.1 Writing to the User EEPROM

These devices have an onboard EEPROM option which is accessible to the user for storing user

information such as system specific data and calibration. Data is written one byte at a time.

unsigned char data = 0xED; /* byte data to be written */

unsigned int memAddress = 0x04; /* address from the data */

status = WriteUserEeprom(deviceHandle,

 memAddress,

 data

);

7.2 Reading from the Calibration and User EEPROMs

Both calibration and user EEPROM data are read back in the form of a byte array. Selection of the

EEPROM, its starting memory address, the length of data to be read back, and an array to receive

the data are passed to the ReadEeprom() function. The code here demonstrates how to read back

the product serial number:

unsigned int startAdd = 0x04;

unsigned int dataLen = 4;

unsigned char receivedBytes[dataLen];

status = ReadEeprom(deviceHandle,

 CALEEPROM,

 startAdd,

 dataLen,

 receivedBytes

);

The serial number is an unsigned 32-bit integer and it needs to be converted to a string format of its

hexadecimal representation, which is the format that is presented in the literature and used to open

a device. Note that data is stored in the calibration EEPROM as little endian. The following is a

method to convert the data to a string format:

char snString[9]; /* 8 chars + termination */

sprintf(snString, “%X”, *(unsigned int*)receivedBytes);

©2018 | SC5309A & SC5310A Programming Manual Rev 2.0

21 General Functions

7.3 Configuring the Frequency Plan

There is a function that allows the user to change the frequency of IF1 and IF2, as well as RF and final

IF (IF3) frequencies. However, the latter two parameters can be dynamically changed using the

SetFrequency() and SetIfFrequency() functions respectively. Calling the following function

will make these the default startup parameters:

status = SetFreqPlanParam(deviceHandle,

 rfFrequency,

 if1Frequency,

 if2FreqFilt#0,

 if2FreqFilt#1,

 if3Frequency,

 lo2PllStepSize,

 lo3PllStepSize,

);

These parameter values are set at the factory to optimize for the performance of the device;

especially for custom filters and their bandwidth. The typical value of IF1 is 3.625 GHz, and IF2 is 305

MHz. Their relationship with the second local oscillator frequency is:

𝐼𝐹1 = 𝐼𝐹2 + 𝐿𝑂2

The lo2PllStepSize and lo3PllStepSize parameters are also affected by the choice of filters and final

IF3 frequency. Optimized PLL step sizes reduce the magnitude of phase related spurious products.

7.4 Self-Calibration of the LO1 synthesizer

The VCO based synthesizer is calibrated at the factory and the calibration is sufficient for the circuitry

to maintain lock with the calibration cycle of 3 years. By design, after factory calibration, the

synthesizer should remain frequency locked for periods of more than 10 years if its temperature

does not deviate from its calibration temperature (typically about 42°C, ±5°C). The procedure can

be run more frequently to ensure the circuit is always optimized despite changes in component

characteristics over time and temperature. Once this function is executed, the program should wait

for 7 to 10 seconds to complete. Upon a successful calibration, it will update the calibration EEPROM

at address 0x1C with 1, otherwise 0.

Note that the following function returns immediately before the calibration procedure is completed.

status = SetSynthSelfCal(deviceHandle);

7.5 Write Registers

Direct access to the device configuration registers is performed using the RegWrite() function. The

parameter regByte is the register address, and these addresses are provided in the

scialbregs.h header file. While the register addresses are found in the header file, their map and

definition are provided in the Hardware Manual. The instructWord parameter is unsigned 64-bit

data associated with the register. Using this function, the input frequency of the device can be

programmed as follows:

Rev 2.0 | SC5309A & SC5310A Programming Manual SignalCore, Inc.

22 SC5309A & SC5310A Programming Manual

unsigned char register = RF_FREQUENCY;

unsigned long long regData = 2000000000;

status = RegWrite(deviceHandle,

 register,

 regData

);

7.6 Read Registers

Directly requesting data from the device is performed using RegRead(). The function has the

following form (from the albfunctions.h header file):

SCISTATUS RegRead(HANDLE deviceHandle,

 uint8_t regByte,

 uint64_t instructWord,

 uint64_t *receivedWord);

Here regByte is the register address, instructWord specifies what returned data associated with

the register is requested, and the receivedWord holds the returned data. Registers that return

data are referred to as query registers, and in many of these the parameter instructWord is set

to 0 (zero) or simply ignored by the device. However, there are others whose instructWord

requires non-zero input. For example, to obtain the current IF1 frequency instructWord is 1, and

the code is:

unsigned long long instruct = 1;

unsigned long long receivedData;

status = RegRead(deviceHandle,

 GET_DEVICE_PARAM,

 instruct,

 &receivedData);

©2018 | SC5309A & SC5310A Programming Manual Rev 2.0

23 Revision Notes

8 Revision Notes

Revision Revision Date Description

1.0 08/18/2018 First Released Version

1.1 02/26/2019 Updated the SetSignalPath() function.

2.0 08/17/2020 Reformatted; grammar edits.

